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PREFACE

This report is part of a continuing research effort sponsored by
the Defense Advanced Research Projects Agency (DARPA) and the U.S.
Arms Control and Disarmament Agency (ACDA) to resolve technical issues
concerning verification of nuclear test ban treaties. Volume I of
this report presents a procedure for estimating station seismicity,
noise, and magnitude-bias parameters. The noise parameters are re-
quired inputs for the Seismic Network Assessment Program for Detection
(SNAP/D). Volume II applies the procedure developed in Vol. I to the
AEDS classified seismic network.

An earlier identically titled version of this report (PSR Report
1552, Vols. I and II, August 1985) derived station parameter estimates
without accounting for the effect of the network detection criteria on
station histograms. This version accounts for this effect and extends
the results of thevearlier report to station-amplitude histograms as
well as station myp histograms.

Acceasion For

NTIS  GRASI o
BTIC TaB
Unannounced
Justificatio

oo

By.

Distpibution/ . "

.....

N ’ Avall andfer
Bist Speciadve

-ii- P\f \




AC5VC110

CONTENTS

PREFACE IR I S A B R R R B SRR BN IR B A R I I I A I I I AN ) DR R N I R R R R R N A N N N NN N K iii

Section
I. INTRODUCTION ® 0 0 0 9 0 6 T OGP O OO P OO NS PP OEEO YOS NN 1

II. NOTATION ® 8 9 0 5 0 0 05 0 600800 A NS LT NSO OS A S S SN NSNE N0 3
IITI. SEISMICITY MODEL .iuiveeeveceoccccesccsanscscnnssasnacncosns b
IV. SINGLE-STATION DETECTION .......... B ) 5
V. STATION HISTOGRAM MODEL ...cvvvvenenecranncecanasacancnns 8
VI, AMPLITUDE HISTOGRAMS ..ceecscecrcoscscencncnssssccsncnsos 1
VII. PARAMETER ESTIMATION ..... ceecssssscsccssssnons cescesacases 14
VIII. EXAMPLE 2 0 86 0 08 006060 5 00600 06006000 08P S S EO LN EOEESIOESIESOIPEES 17
APPENDIX
A, THE DISTRIBUTION OF OBSERVED MAGNITUDES ..ccceeeeanns cesnes 20
B. MINIMUM CHI~SQUARE AND MAXIMUM LIKELIHOOD IN
FITTING A POISSON PROCESS MODEL ....cecececcess cesecerans 29

REFERENCES 000G e L ONORORNRNOESESIOEEOPOEIOOIEOIEONOSIOINOTIEOROETRTTSE s e vesev e se s v 00 00 38

iii




AC5VC110

I. INTRODUCTION

This report develops a model that can be used in conjunction with
single-station histogram data to estimate station seismicity and
performance parameters. The histogram data generally consists of a
plot of the number of earthquakes (from a restricted epicentral
region) versus station my, although a model for the treatment of
station amplitude histograms for worldwide seismic data is also
considered. The estimated station parameters consist of the mean
noise levei, u, the standard deviation of log noise, o,, and the
station magnitude bias, e. In order to estimate e, a similar his-
togram of network detectibn performance corrected for maximum-
likelihood (ML) my magnitudes must also be available.

The noiée parameters u and o, for each station are required
inputs for the Seismic Network Assessment Program for Detection
(SNAP/D) [Ciervo, et al., 1983]. Previously, their values were either
estimated from measurements made on seismograms, or inferred from
station detection thresholds. The empirical method does not generally
ensure accurate replication of station performance in SNAP/D runs and
the threshold-inferred estimates are generally reliable only for
magnitudes near the station threshold. The procedure presented here
is based on past station performance throughout the magnitude range
experienced by the station and is thus believed to be an improvement
on prior noise parameter estimation procedures.

A similar treatment for a somewhat different problem has been
presented by Kelly and Lacoss [1969] where ML estimates were derived
for network performance parameters. However, for mathematical con-
venience, a single-station Gaussiah detection model was used to repre-
sent the network detection process. Furthermore, the biasing effect
of non-ML corrected network m estimates [see Ringdal 1976] was not
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understood at that time. A similar effect on single-station seis-
micity estimates is accounted for in the procedure derived here. In
addition, single~station noise estimates are corrected for the dsual
four-station P-wave network detection criteria. ‘

The procedures developed here are illustrated using histogram
data for the station HYB (Hyderabad, India) observing events from the
Kamchatka/Kurile region of the USSR. The estimation procedures are
also applied to the analysis of classified station my histograms as
detailed in Vol. II of this report. However, station Mg histogram
data was either too sparse or irreéular to obtain reliable estimates,
hence Vol. II presents Mg noise parameters from a previously published

report [Hutchenson, 1983].
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II. NOTATION

The following notation will be adopted for the discussion below:

p B B

(v

9 0 v o R

operational mb

mb observed at a single station

log amplitude (log A/T)

log amplitude observed at a single station

density for the expected number of earthquakes
occuring with magnitude m

intercept of base e seismicity

slope of base e seismicity

station mean noise amplitude

station magnitude bias

SNR required for station observation

b-factor (i.e., m = log (A/T) - b(A))

-b(A) + log.u‘t logr

unit normal probability distribution

standard deviation (s.d.) of‘abgiven m

s.d. of single-statioﬁ iog noise

nﬁmﬁer of events in kth magnitude interval
of station histogram

station index

epicentral region index
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III. SEISMICITY MODEL

It is generally accepted that logarithmic seismicity from a given
region is linear with respect to seismic magnitude [(Richter, 1958].
Thus, if N(m)A is the average number of seismic events per year occur-
ing in the operational magnitude* interval (m - A/2, m + A/2), then
define a and 8 such that

N(m) = e®*8m | (1)

As in Kelly and Lacoss [1969], the actual number of events in an
operational magnitude interval of width A is assumed to be Poisson
distributed with mean N(m)A. Although, to the best of our knowledge,
no formal justification has.been offered for this assumption, it is
reasonable since over a fixed time interval (say, one year), the
occurrence of primary earthquakes parameterized on magnitude appear to
satisfy the axioms of a nonhomogeneous Poisson process [Parzen, 1962].

Define the kth operational magnitude interval as (my = 4/2, my +
" A/2), where A = mpyq - my, k=1, 2, ..., and Xy as the random number
of earthquakes with operational magnitude within the kth interval.
Then the Poisson assumption implies that

~N(m, ) [N(mk)A]x

o x=0,1,2, ... (2)

?{Xk = x} = e

where N(my) is given by Eq. (1).

At this point no claim hasAbeen made about the distribution of
Yy, the number of earthquakes detected by a single station with ob-
served magnitude in the interval (fy ~ A/2, fi + A/2). However, using
Eq. (2) and the results below, Appendix A proves that.Yk is also Poisson.

*For a discussion of true, operational, and observed
magnitudes see von Seggern and Blandford [1976]. Unless otherwise
noted, all magnitudes are mp values with the subscript
suppressed.

-l
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IV. SINGLE-STATION DETECTION

The amplitude of a seismic signal arriving at a station may be
considered to result from a series of random multiplicative
(attenuation) effects on the seismic source amplitude. The central
limit theorem would then imply that the log of the stétion amplitude,
and hence observed magnitude fi, is a Gaussian random variable

given the operational magnitude m. Thus,

A 2
- w i DM
oy
Pi{m|m} = e (3)

08/5? .

where og is the log signal s.d.

The log of the station hoise amplitude at any time is also Gaus-
sian since the noise is generally composed of signals from myriad
minor seismic disturbances. Suppose a station detects a seismic
signal with amplitude s whén s/n > r where n is the noise amplitude
and r is the signal-to-noise ratio (SNR) required for detection. The
probability of detection would then be

Pp = Pi{s/n> r}
= P{log s -~ (log n + log r) > 0} . ()*

From the discussion above, log s and log n are Gaussian with expecta-
tion and variance given by (in SNAP/D notation [Ciervo, et al., 1983])

E(log 8) = log(A/T)
V(log s) = o3
E(log n) = log u

L]

*The following notation is used: logyp = log and loge = n.
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and

2
V(log n) = o -

where A is the mean signal amplitude in nm at the dominant wave period
T. Seismologists prefer to use the quantity A/T because of its
relationship to the energy in the wave train [Richter, 1958].

Thus; Eq. (4) becomes

PD - & log(A/T) - (log u + log r) (5)
' 2 2
g+ 0
s n

which is essentially Eq. (6) in the SNAP/D User's Manual. The

relationship between magnitude m and amplitude A is

m = 1og(A/T) - b(4) (6)

where b is the correction factor for epicentral distance A. Defining

‘u' = -b(A) + log u + logr (7)

Eqs. (6) and (7) allow Eq. (5) to be rewritten as

Note that Eq. (8) is actually the probability of single~station
detection conditioned on operational magnitude m. It is also useful
to consider the detection probability conditioned on the observed

magnitude fi. In this case, the only uncertainty is the noise

amplitude so that [Von Seggern and Blandford, 19761],

-6~
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P(J| 8} =o <‘T‘ ;n‘"> (9)

where 7 denotes detection.
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V. STATION HISTOGRAM MODEL

Incremental histogram data is generally a piot of yy = the number
of events detected with observed magnitude in the interval (fi - 4/2,
fiy + A/2) where A = fiy4q - @iy, k =1, 2, ... . The histogram data yy
is a realization of the random variable Y, discussed on p. 4. The
expectation of Yy, which is needed for sﬁation parameter éstimation,
is derived below from the seismicity and single-station detection
models above.

Recalling that N(m) is the average density of earthquakes at
operational magnitude m, the average density of earthquakes arriving

at a station with observed magnitude fi is

./ﬁ P{fi|m} N(m) dm .
o

Thus, the average density of earthquakes detected by a single station

is, using Egs. (1), (3), and (9), given by

N(f) = P @) f Pi@|m} N(m) dm
[e]

- Lo i @_;22

n.

= oa'+Bf @(ﬁ = “'> (10)
On

where a' = a + 0.5 320§ and the approximation is due to the negligible

effect of using O instead of <= for the lower limit of the integral.
Thus, as noted by von Seggern and Blandford [1976], the apparent
_8-
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effect of using station histogram data to estimate seismicity is to
introduce an upward bias of 0.5 B2o§ into the intercept parameter a.
The expectation of Y, is given by

E(Y,) = N(fig)

where, from Eq. (10), B = (&n 10)"18 and A' = (&n 10)~1 (%nA + a').
The unbiased histogram intercept is then A = (&n 10)'1 (¢n A + a) sO
that the upward bias is A' = A = 0.5 (%n 10)~1820§ = 0.5(%n 10)BZ03.
Using the assumption that operational seismicity is Poisson, Appendix
A proves that the Y, are Poisson random variables so that Eq. (11) is
also the variance of Y. o

The above discussion assumes that detection at an individual
station is independent of the performance of the remaining stations in
the network. In fact, the teleseismic detection of an earthquake
generally requires at least a four~station detection of the P-wave.
The effect of ignoring network influence is to overestimate station
noise levels. To properly account for the effect of the network
detection criteria on the station i histogram, the probability of the

remaining stations in the network (i.e., the "reduced network")

providing at least a three-station P-wave detection must be con-

sidered. With this approach, Eq. (10) becomes
ﬁ(ﬁ) - '?{Zg’lﬁ} ‘,ﬁ ?Wi& |m} P{fi|m} N(m) dm . (12)
()

where ﬂs and fﬁN represent detection by station i and the reduced
network, respectively. Since a closed form expression for ?{.DNIm}

does not exist, SNAP/D is run over a range of m's for each reduced

network. The integral in Eq. 12 is then computed numerically.
..9...
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Note that each SNAP/D run in the numerical evaluation of Eq. 12
requires the noise inputs u and ¢ for each station in the reduced
network. This requires an iterative process which begins with zeroth
order u.and o estimates® (from the assumption of independent station
histograms) to determine ?W.ﬂNlm} for each reduced network, which in
turn are used to calculate first order p and o estimates, and so on.
The detailed results of such an iterative process are shown in Vol. II
of this report for the AEDS network. After five iterations, the es-
timated values for u', ¢, and A con#erged to fifth digit accuracy.

The resulting p values converged to at least three digit accuracy.

A}

" The parameter estimation procedure is described in Section VII.
=10~
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VI. AMPLITUDE HISTOGRAMS

The expressions derived in the previous section can be general-
ized to station i log amplitude histograms provided the event's
epicentral region, j, is known, along with the seismicity of the
region. Denoting the quantity, log A/T, as 'a' for brevity, Eq. (6)
yields' '

a=m+ b(a) .

The attenuation factor, b,
station i and epicenter j,

development by bij' Noting

depends on the angular distance A;j between
which is indicated in the following

that the observed fi; is related to the

operational mj by a normally distributed deviation §;j, with mean e

and standard deviation ogj, the above expression becomes

a1 - m1 + bij + Gij .

Eq. (12) can be now be rewritten as

N(& ) = Z [ '/mj NJ(m)?’{ﬂNlm at j} P& |mat j} fp{ﬂslék}] (13)

J
where
a.+f.m
N.(m) = e 373
J
a 2
a -» - e -m
-1/2( k1] 1) >
osi ‘
Pl |mat §} = — e
Yor o
si
and

-11_
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The necessary inputs for such a general expression would be ajs Bj,

eij, and ogj. The integral still must be evaluated numerically
with P{Jy|m at j} computed by SNAP/D.

There are three special cases for the amplitude histogram

problem:

1.

Bj = 8 for all j: with this assumption, B can be estimated as in
the earlier discussion by treating data as independent and
averaging the fitted BJ's. The SNAP/D iterations and the
numerical integral would still be required.

Independent amplitude histograms are equivalent to
?{fﬂN|m at j} = 1.0

and would remove the need for the SNAP/D iterations.

Independent amplitude histograms with Bj" E would cause Eq. 13

to become

N, (5) = Z anJ(m) Pl at im at 3} P{I|f at 1} | dm
J m

i -m- ei.
a - u" a.+B.m -1/2 [ .
= @(.E——-é‘—) E [e J ] e si
j m

%%
dm
X (1)
Y2w ¢
si
Where
» "
W o= log By + log ri
Defining
2 2
a'! = a_ + 2 si__ B e
J J 2 ij
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and
o -B(b +e .> + a!~Bb
a' = n E e J 13 1] 2 = 4n E e J 1
J J
simplifies Eq. (14) to

\ "

- a'+ga 8 -y,

a Kk k i
Ni(ak) = e d e (15)

so that the functional form of the expected number of events in a bin
is similar to the independent my case Eq. (10). In Eq. (10), a', ug,
and o3 would generally be regarded as free parameters to be estimated,

while B may be regarded as fixed or free.

#~1 3~
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VII. PARAMETER ESTIMATION

For ease of computation, a minimum chi~square (MCS) estimation
procedure was chosen. However, Appendix B proves thé asymptotic
(large Z_yy) equivalénce of MCS and ML estimates for this problem.
For each station the MCS estimates are those that minimize the usual

chi=square sum, i.e.,

(o, - e )

k K
min :E:
(u',on,A',B> ek (16)

k

where, in our case, the kth observation oy = yy, and the expected
observation ey = N(fi ), where N is given by Eq. (10) or (12) depending
on whether independent or dependent station dafa is used . In prac-
tice, the MCS sum is computed over all k for which ey 2_1; where the
parameter values at each stage of the iterative minimizaiion process
are used to compute ex. The technical properties of the MCS estimates
(and their asymptotic équivalence to maximum likelihood (ML) es-
timates) are detailed in Appendix B where the variance of the es-
timates are also derived.

Estimates for each étation are calculated in thrée steps: (1) the
minimization indicated in Eq. (16) is performed (under the assumptiodn
of independent station histograms) with all four parameters free; (2)
the weighted average '

w)
n

E ; niBi

i

o R

is calculated where B; is the station i slope estimate from step (1),
ny is the number of events in the station i histogram and n = Inj; and
(3) the minimization is repeated with three free parameters and B = B

-1h-
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fixed for all stations. In the case of network dependent histograms,
the iterative minimizaﬁion procedure presented in Sec. V must be

used. The rationale for setting B = B to obtain the final ', Ops and
A’ eétimates is that B is generally a better estimate of the opera-
tional slope than an individual Bj.

SNAP/D requires mean station hoise levels in amplitude units (0-P
in nm) and standard deviations in log amplitude units. Thus, if the
minimization procedure described above provides u'j ahd Oni estimates
for station i, then the SNAP/D'station i noise inputs are, from

Eq. (7),

uy = 10 w'i + b(44) = log r
and opn; unchanged.

The complicafions arising from network influences on mp his-
tograms, as discussed in Sec. V, imply that, in this case, an unbiased
seismicity estimate may not Se available from the MCS fit. However,
the results of applying the procedure to AEDS station data (presented
in Vol. II of this report) indicate a negiigible change in A'
parameﬁer estimates. Thus, the expression for the unbiased station i
intercept parameter; Ay = A'y ~ 0.5(%n 10)B2¢2, as discussed in Sec. V
for the case of independent my daﬁa, is‘also used as a reasonable '
approximation for the case of dependent data. Since SNAP/D calcula-
tions are conditioned on the occurrence of a.seismic event, seismicity
is not a SNAP/D input for unassociated data, but estimation of the
intercept parameter Aj permits estimation of station magnitude bias as
discussed below.

Ifr network'estimates of operational seismicity parameters AygT
and Byg are available, then the MCS procedure would consist only of
step (3) with Bj set equal to BNEf. In this case, the estimate of
station magnitude bias would be |

v ANET T Ay
e -
1 BNET ’

-15=
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this expression assumes that the station i was in operation
continuously. If the periods for which station i is inoperable are
known, an obvious modification of AyeT could be made so that the ej
calculation would still be correct. The usual caution associated with
using network histogram data to esﬁimate seismicity must be observed:
only MLE corrected network magnitude data can be used to obtain un-
biased estimates of Aygpr and Bypr due to the "bulge" phenomena as-
sociated with histograms based on network average magnitudes [Zavadil,
et al., 1983]. Although SNAP/D can in principle accommodate correc-
tions for staﬁion magnitude bias through use of the correction factor
eijk (in SNAP/D notation: i = station index, j = epicenter index, and
k = wave index), in practice the required data acquisition and
analysis ﬁould be formidable even when restricted to P~wave observa-

tion for seismically active areas in the Soviet Union.

~16-
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VIII. EXAMPLE

The calibration procedure described above was applied to 1976~
1980 histogram data compiled by F. Ringdal [Rivers, 1984] for Kam-
éhatka events observed by the staﬁion in Hyderabad, india. The ap-
plication assumes independent station data for simplicity.of discus-
sion. This is clearly an approximation to the true case of network
association. Figure 1 plots the data, the MCS fit (Eq. (6)), the
unbiased station seismicity (10Ai+§m), and, since no ML network mag-
nitude data was available, hypothetical unbiased network seismicity
(1o*NET*BNETM). Assuming Bygy ~ B, A = 0.1, and og = 0.35, the sta-
tion magnitude bias 0.5(&n 10)Bao§ is also indicated. Note that the
apparent station seismicity'bias refers to the "vertical" difference
between apparent asymptotic (large magnitude) station seismicity
(10A'i+Em) and the unbiased station seismicity (10R1i*B™). oOn the
other hand, the station magnitude bias refers to the "horizontal"
difference between the unbiased station seismicity and the unbiased
network seismicity (1oANET*BNETM),

The MCS estimates for HYB are

p' = 4.83
op = 0.20
A' = 6.15

with seismicity slope fixed at B = -0.89. Thus, SNAP/D noise

parameters would be

u = 108" * b(8) - log r

= T.48

—17_
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and oy = 0.20 where b(A) = #3.78 is the Veith and Clawson [1972] O km
entry for A-= 68.82° and r = 1.5. The unbiased seismicity intercept

is
A =A' + 0.5(%n 10)B203

= 6.04 .

-1 9_




AC5VC110

Appendix A
THE DISTRIBUTION OF OBSERVED MAGNITUDES

This appendix will show that if X(m), the random number of
earthquakes with operational magnitude in the interval [O,m), is a
Poisson process, then Yj(fi), the number of earthquakes detected by a
single station with oSserved magnitude in [0,fl), is also Poisson.
Hence, the histogram data Yk discussed on p. 4 of the text is a Pois-
son random variable.

Let X(m) be a Poisson process with density function

X(m) - ea“Gm ,

where § > 0, me[0,»), and § = -8, in the notation of Sec. III. X(m)
denotes the total number of earthquakes with operational magnitude in
the interval [0,m), and X(m) is the total number of earthquakes with
magnitude bigger than m (i.e., magnitude in the interval (m,w))*. Both
X(m) and X(m) are assumed to be Poisson processes, with respective

mean value functions

E[X(m)] £ A(m)

'

*ilm) is the Poisson process treated by Kelly and Lacoss [1969].
-20-
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n>

E[X(m)] = K(m)

4’7 A(s) ds

m

ea-Gm

8

In an interval (m -~é: m +-%), the expected number of earthquakes
is ' |

Now to develop the distribution of Y(#&), the number of
earthquakes with observed magnitude in [0,@),.1et n; be the opera-
tional magnitude of the 1th smallest earthquake recorded by the sta-
tion, where n; may be smaller or bigger than fi. Let ﬁi denote the

corresponding observed magnitude, so that
ﬁi =n; +te,

where the measurement error €4 is Gaussian with mean 0 and standard
deviation Og.
Define the 0-1 valued function

. 1 if n+esSA
w(fi,n,e) =
0 ir n+e>fl

Then the 1D earthquake is included in the Y(f8) count if f; s fi, i.e.,

if w(m,'ni, ei) = 1, and otherwise not. Thus, Y(fi) may be expressed

as ,

-21-
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Y(fi) = Z w(fi,ng, €4)

i

Clearly, Y(R) is a nonnegative integer-valued random variable.

The assertion that Y(R) is again a Poisson process can be proved
in several different ways, but we shall present a proof that is
spraightforward and intuitively appealing. '

First, we demonstrate a fairly well known lemma [Papoulis, 1984]
relating the limiting distribution of a sum of independent Bernoulli
(0-1 valued) random variables to a Poisson variate.

Let X1y Xpp eeey X Xps1s oo be a sequence of independent

n,
random variables such that x; is 1 with probability p; and 0 with
probability q; = 1 - p;j. Further, let

n
A = 1lim E py <=
n->o
i=1
and assume that max pi->o as n+o,

18isn

n
Then we assert that Z, = Z x; converges (as n+w) to a Poisson ran-
i=1
dom variable Z with mean A.
To show this, we exhibit the characteristic function of each X4
and of Z, and show consequently that the characteristic function of Z,

converges to that of Z, thus establishing the lemma.

.22~
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The characteristic function of the Bernoulli variable Xy is

¢;(u) = E (ejuxi)

- py e gy

(where j = /=1) and the characteristic function of the Poisson variate

Z is
E(ejuz)

Ak
e "
- z : eJuk
k!

k=0

¢Z(U)

k=0
. eA(eju-ﬂ)

Now note that if Py << 1, then

p; (edU-1)
e i

1+ pi(eju-1)

- pyed¥ + gy

¢4 (u) (A.1)

and so
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n
!,n'¢z (u) = Z n ¢i(u) (by independence of xi)
n
=1
n
- Y eyt e -py)
i=1
n .
- [l ) o]
i=1
- n n
Y mle) s Y wn
i=1 i=1
27® a(edY - 1) (A.2)

where 8;+0 as p;+0. Hence ¢Zn(u)-—>¢z(u), establishing the lemma.

To show that if X(m) is Poisson, then so is Y(f), begin by par-
titioning the magnitude axis [0,=) into consecutive intervals I; =
(aj, @j47) of fixed length (or mesh) Aa = aj,q - aj, as in Fig. A.1.
Let AX; denote the number of earthquakes with operational magnitude in
the interval I; and let AY (R, “i) denote the corresponding contribu-
tion to the sum Y(ff) due to the error in measuring the operational
magnitudes of the éarthquakes in interval I;. Thus, we may write Y(f)

8 - ) MY, ap)
i

as

oy oy oo Oy : ai’ O
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If the mesh Aa of the partition is small, then, within probabil-

jties of order Aa, the random variable AXi takes the value 0 or 1, and
P(AX; = 1) & A(ay) Aa

where, as before, A(m) = ea-&m is the intensity function of the Pois-

son process X(m).

If AX; = 0, then necessarily AY(A, ai) = 0. But if AX; = 1, then

AY(ﬁ, Qi) = 1 ¢ ﬁli = T\zi + Ezi S i

or € Sfi-n
Ay %

where the operational magnitude ngi lies in interval Ii'

Thus, approximately, given that AX; = 1,

- ai
P[AY(m,ai) =1 | 8%y = 1] =9
%

since the measurement error is Gaussian with mean 0 and standard

deviation og4. Hence the unconditional probability is

- ai
plaxc, o) - 1] = aap) tap(——
s

Now, the random variables AY(fi, ay) take the values 0 or 1 and
are independent, because the AX; are independent (Poisson variates in
nonoverlapping intervals) and the measurement errors ezi are
independent. Therefore, by the lemma, as the mesh Aa-0, the sum Y(ft)

= i AY (R, “i) tends to a Poisson variate with mean

‘ fl - oy r fl - m
lim E Aay) @\= Ao = Alm) dm
Aa-0 n 0g Og

o (A.3)
-25-
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The above argument also illustrates that for two nonoverlapping
intervals (0, 8) and (m, i + t), where 8 < i, the variates Y(8) and
Y(ft + t) - Y(}) are independent, and, of course, Poisson. Hence Y(ft)
is also a Poisson process, as was to be shown.

From Eq. (A.3), we may write the mean value function for Y(#) as

r i - m
mm-_/ MM@( >m
Og

0

and the corresponding intensity function is

(fi~m)2
(- .] —T
d 1 20
f) = — M(f) = atfm _____ S dm
Wil = g M@ f M

(A.4)

= f N(m) P{f|m} dm ,

o

as in Section V, pg. 7.
Finally, we consider the effect of the probability of detection

f - u
PLI|m} = q>< )
%n

on the process Y(fi). As before, partition the magnitude axis into

disjoint intervals ii = (834, Gy4q9) with mesh A& = &;,q - &;, and let
Ad be so small that within brobabilities of order A& the number AYi of
occurrences of earthquakes with measured magnitude in ii is 0 or 1.
If AY; = 0, define AYp(fi, &;) = O.

If AYi = 1, define

AYD(m, &i) = T ¢ the event in ii is detected.

-26-
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Thus, given AY; = 1, the conditional probability that AYp (R, Gy) is 1

is

P[AYD (B, &;) =1 | aY; = 1] = PLI|0} (A.5)
and as developed earlier

The total number of earthquakes detected in [0, fi) is

i
And from Egqs. (A.5) and (A.6),
P[AYD(fh, G;) = 1] = u(a)P(D]a4} Gy

Thus, as the mesh A&a-o,the total number of earthquakes with magnitude

in [0, i) that are detected is a Poisson process with mean

fl
Mp(f) = ‘/P u(x) ?{9[x} dx (A.7)
()

In an interval (fh - -é-, A + é—) the number of earthquakes that are
detected is given by

MD(m + .%) - MD(fh - -é—) = / u(x) ?{?Ix} dx

-27-




AC5VC110

ﬁ+%

= P{J|m} / u(x) dx
B3

Finally, by differentiating Eq. (A.7), we obtain the density (see
Eq. (A.4) for u(ft)) for the detected process,

up(R) = u(f) PI|f)

= P{9|0} J/P N(m) P{fi|m} dm

Q
= N(R) ,

as in Eq. (10) of Sec. V of the text.

=28~
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Appendix B
MINIMUM CHI-SQUARE AND MAXIMUM LIKELIHOOD
IN FITTING A POISSON PROCESS MODEL

In this appendix, we assume that count observations can fall into
any one of K bins or magnitude intervals, where each bin has the same
width A. Let

Yk = number of observed counts in kth bin

ey = expected number of counts in kth bin

a+8mk m =M
= @ @
On

= @ h(m,, 8')

= Yh(mk’ )

for each k, k = 1, ..., K, where my is the midpoint of the kth bin,

6 = (8, u, 0,), 8' = (a, 8), and the definition of h(.) is clear from

Q

the above. Note Y e,

Assuming that Yq» s+es Yg are independent Poisson random vari-

ables, where Yk has mean Ak, then N = Zyk is also Poisson with mean
Z) . Moreover, the joint density function (or likelihood function) of

Yis sees Vg is

I -A
K e "Akyk
(B.1)

L(8") = £y, +es Y0 = 7
k k

The density function for the sum N is

’

-29-
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P(N=n) = , for n=0, 1, «os &
The log of the likelihood function from Eq. (B.1) is then

log L= =% A, + L n A, = L in !
g kkkyk kkyk

= - Yh(m.,, 8) + I [2n Y + &n h(m e)] - I &n !
“ < ¥ el “ « (Zkz)

MAXIMUM LIKELIHOOD ESTIMATION (MLE)
The maximum likelihood estimate (MLE) &' for 6' is obtained by
choosing 8' to maximize L(6'), or equivalently log L(8'). If L(8') is

differentiable with respect to 8' (as in our model), the MLE &' is
obtained by solving the equation

2
- log L(6') =0 . (B.3)
90"
By differentiating Eq. (B.2) with respect to Y, we obtain

9 log L 1

= -7 h(m 8) + -
3Y kK K’ yik Yk

or

I
AR N

ﬁ h(mk, 0) & h(mk, 0)

~
=

(B.4)

Substituting this expression for Y in the log likelihood (B.2), we
obtain (aside from a constant depending on N, but not depending on 8)
the log likelihood for the conditional distribution of (y1, ces yK)
given N = I y,, which is multinomial with parameters N, w1(e), ooy
nK(e), where for 1 s k £ K,

-30-
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h(mk) e) Ak(e')
L h(m;, 8) L As(8")
j J i J

This version of the log likelihood may then be maximized (by solving
for 3log L/36 = 0) to obtain the MLE estimates for & = (B, u, op).

MINIMUM CHI-SQUARE ESTIMATION (MCSE)
Although the asymptotic properties of MCS are well known for the
multinomial case [Cox and Hinkley, 1977 and Rao, 1957], they do not

seem to be not as well known for the Poisson case. Since we were not

able to find in the 1literature an exact reference for the Poisson
case, we present the development here.
For the Poisson model, the MCS estimate is achieved by minimizing

Z( - e )2
S(e'). _yk_e_?K__
k
k

:E:: (v, = A (82
A (8
- (8"

where ey is the expected number of counts in bin k, which in this
model is A, (6').
The MCSE is obtained by solving the equation

(B.5)

9
— S(8') =0 .
a0’

We will show that under suitable regularity conditions, the solution
of

2 S(Y) =0
Y

yields an estimate Y which is asymptotically equivalent to the ML

-31-
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estimate ?, and that substitution of the resulting estimate into

Eq. (B.5) yields (approximately) the MCSE for the multinomial dis-

tribution, which is known to be asymptotically equivalent to the MLE.
Now the MCS criteria is

Yh(mk, 9)

- [ - Yn(m,, e)]2
S(8') = Z Dk 2 (B.6)
K

Letting hy = h(mk, §) and differentiating with respect to Y, we obtain

.. Z -2(y, - M) b2 ¥ - (y, - M )0,
Y ¥ ng
Z r2 - 42
” , K
hence
1/2

2

) Yk

7 .|kl

T h

j J

is the MCS estimate of Y, for fixed 6.

The ML estimate ¥ is unbiased, since

E(°)-E<N )- ..
L h Iy

Its variance (since N is Poisson) is

-32-
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The variance becomes small if E hk is large, which we shall assume.

To evaluate the mean of the MSCE Y, let

L h;

Since Yy is Poisson with parameter Y hk,

2 .2

ED =v2nd+vn, .

Thus

; (Yzhﬁ + Yhy )

h
E(Z) = -K k
i
K
-Y2+Y_
K
- Y2 v YIh
kk

To first order, then, since ¥ = z'/2,

-33-
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172

2YLh
kK K

where the last approximation follows from the Taylor expansion of
/1+X.

K -
If —— goes to 0 (or K ! L h, grows large) the bias term goes
& hy k
to zero.
It may also be shown, using the first four moments of the Poisson

distribution, that to first order,

just as for the MLE y.

Thus, if K and I hk grow large in such a way that y/I hk
k ' k
and K/E hk decreases toward zero, Y and ¥ will be asymptotically

equivalent.

Writing

where the error e(Y) depends on Y and on I hk, we replace Y by

Y = N/E h, +-€(Y) in Eq. (B.6), and obtain

L4

-34-
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L h;
S(8) = :E: J

N h
—X 4+ e(M n
k £ h. k

j J

But if |e(Y) h,| is small for each k, this yields (approximately) the
MCS criterion for the multinomial distribution of (yq ..., yg) given
N. From Ferguson [1958], the resulting MCS estimate for 6 = (8, u, on)
is asymptotically equivalent (as N grows large) to the ML estimate
(i.e., 8 is Best Asymptotically Normal, or BAN).

The asymptotic equivalence of MCS and ML estimates allow us to
use the usual MSE approach [Cox and Hinkley, 1974] to evaluate the

asymptotic variance for the MCS estimates. Thus, we evaluated

32

- —= log L(e")

|
hy
v ~| NeE— + e(1) 1,
36"

ev.'é‘v

where 8' is the MCSE, and inverted this matrix to achieve the es-
timated variance~covariance matrix for 6'. Elements of this matrix are

given below (with a sign reversal):

a

92 (1ogL(e')) a+Bmy m =y
Y- :E:: —e 4’(\ o

32(logL(6"))
da 9B

32(logL(e'))
9a Ju
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2 v - -
3(10gL(6")) Z m uea+em1 ¢<mi u)

sa 3on N °n o

32(1031.( er)) 2 G+Bmy m =~ u
- - pod R
282 Z ™y e o

i n

32(1ogL (@’ -
(ogL(e')) _ Z Ll o2t
a8 3u 1 o, on

1

32(1ogL(8' )) my(m = u) aedmy  fm -y
% 30, Z : 02 ’( >

22(1ogL(e")) m - u ot -
——. 2 (At m’o(u>

¥ N n

2 ' - - 2
] (;08;(9 )) . 2 _ _;_ea*emi . m - ' - m -
u dop T of -

() [ oy £
+ !é ° 1 - s SR - O my = ¥
o5 my - ¥ o ® m - ¥ o0
ﬂn qn
2
32(1031.(6')) mg -~y a+Bmy m - m, - ¥
-—-—1— - -Lg-—‘ ¢ -2 + —L-—
3 op ; o3 € < o o
m, - n m, - u
( ) ’(1 > °<i )
! ’”13 e °n » - U T °n
o LA o o (mi-u>
On un
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In summary, we have shown that

1.

The MLE ?Vis unbiased for Y, with variance inversely propor-
tional to L hk; thus Y converges to Y in probability if T hk
grows large.

The MCSE Y is biased, with bias

b(e) =

2rh
Kk K

As K-1 z hk grows large, the bias decreases toward zero. The
variancg of Y is, to first order Y/I hk, just as for the
MLE. ’

We may write ¥ = Y + ¢(Y), where the error term e(Y) is the

sum of two components

i) the bias term b(9) =
2 E hk

ii) a mean zero random component with variance

Asymptotically as I hk grows large and I hk/K grows large,
the error e(Y) becomes small.

Replacing Y by ¥ in the equation for the MCSE criterion
yields, because of continuity, a solution that is asymptoti-
cally equivalent to the MLE for 8 = (8, u, 0,).
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